Cannabinoid and kappa opioid receptors reduce potassium K current via activation of G(s) proteins in cultured hippocampal neurons.
نویسندگان
چکیده
The current study showed that potassium K current (I(K)), which is evoked at depolarizing potentials between -30 and +40 mV in cultured hippocampal neurons, was significantly reduced by exposure to the CB1 cannabinoid receptor agonist WIN 55,212-2 (WIN-2). WIN-2 (20-40 nM) produced an average 45% decrease in I(K) amplitude across all voltage steps, which was prevented by SR141716A, the CB1 receptor antagonist. The cannabinoid receptor has previously been shown to be G(i/o) protein-linked to several cellular processes; however, the decrease in I(K) was unaffected by modulators of G(i/o) proteins and agents that alter levels of protein kinase A. In contrast, CB1 receptor-mediated or direct activation of G(s) proteins with cholera toxin (CTX) produced the same decrease in I(K) amplitude as WIN-2, and the latter was blocked in CTX-treated cells. G(s) protein inhibition via GDPbetaS also eliminated the effects of WIN-2 on I(K). Consistent with this outcome, activation of protein kinase C (PKC) by arachidonic acid produced similar effects to WIN-2 and CTX. Kappa opioid receptor agonists, which also reduce I(K) amplitude via G(s) proteins, were compared with WIN-2 actions on I(K.) The kappa receptor agonist U50,488 reduced I(K) amplitude in the same manner as WIN-2, while the kappa receptor antagonist, nor-binaltorphimine, actually increased I(K) amplitude and significantly reduced the effect of co-administered WIN-2. The results indicate that CB1 and kappa receptor activation is additive with respect to I(K) amplitude, suggesting that CB1 and kappa receptors share a common G(s) protein signaling pathway involving PKC.
منابع مشابه
mu-Opioid receptor-mediated reduction of neuronal calcium current occurs via a G(o)-type GTP-binding protein.
It has recently been shown that the activation of mu-opioid receptors inhibits several components of calcium channel current in rat DRG sensory neurons. mu-Opioid receptors, acting through the pertussis toxin (PTX)-sensitive substrate Gi, also reduce the activity of neuronal adenylate cyclase, but the relationship of this effect to changes in calcium channel activity has yet to be determined. U...
متن کاملProtection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/ Bcl-2 Ratio and Prevention of Caspase-3 Activation
Introduction: Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Methods: Male rats weighing 260-300 g were randomly allocated into three gro...
متن کاملNociceptin augments K(+) currents in hippocampal CA1 neurons by both ORL-1 and opiate receptor mechanisms.
We previously reported (see also the accompanying paper) that dynorphin A significantly enhanced the voltage-dependent K(+) M-current (I(M)) in CA3 and CA1 hippocampal pyramidal neurons (HPNs). Because the opioid-receptor-like-1 (ORL-1) receptor shares a high sequence homology with opioid receptors and is expressed in rat hippocampus, we examined the effects of orphanin FQ or nociceptin, the en...
متن کاملDynorphin-Dependent Reduction of Excitability and Attenuation of Inhibitory Afferents of NPS Neurons in the Pericoerulear Region of Mice
The Neuropeptide S system, consisting of the 20-amino acid peptide neuropeptide S (NPS) and its G-protein coupled receptor (NPSR), modulates arousal, wakefulness, anxiety, and fear-extinction in mice. In addition, recent evidence indicates that the NPS system attenuates stress-dependent impairment of fear extinction, and that NPS-expressing neurons in close proximity to the locus coeruleus regi...
متن کاملBlockade of U50488H on potassium currents of acutely isolated mouse hippocampal CA3 pyramidal neurons.
The actions of the opioid agonist U50488H on IA and IK were examined in acutely isolated mouse hippocampal CA3 pyramidal neurons using the whole-cell patch clamp technique. U50488H caused a concentration dependent, rapidly developing and reversible inhibition of voltage-activated IA and IK. The inhibitory actions were still observed in the presence of 30 microM naloxone or 5 microM nor-binaltor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 84 5 شماره
صفحات -
تاریخ انتشار 2000